Chemguide: Support for CIE A level Chemistry Learning outcome 28: Chemistry of transition elements 28.2: General characteristic chemical properties of the first set of transition elements, titanium to copper Learning outcomes 28.2.1, 28.2.2, 28.2.3, 28.2.4, 28.2.5 and 28.2.6 These statements are an introduction to transition metal complexes. I am taking these statements together because they are all part of the same topic. As you read through this page, keep an eye on the syllabus statements and tick them off as you have done them Introduction There is far more about complex ions on Chemguide than you will need for CIE purposes. So I am going to ask you to read some Chemguide material as background, and then I will pull all the specific information that you need together on this page. First read the page introducing complex metal ions. Don't try to remember all of this - there is more there than you really need. What you need to do is to understand what is going on. For CIE purposes, the most important things to know in this introductory bit is:
Complexes don't have to involve a transition metal. You will find an example of an aluminium complex ion on that page. It is more common with transition metals, though. Now read the page about the shapes of complex ions. You don't need the later part about stereoisomerism at the moment. This is dealt with in Section 28.4. The page gives you examples of octahedral, tetrahedral and square planar complexes, but not a linear one - which the syllabus also wants. The simplest of these is the diamminesilver(I) ion, Ag(NH3)2+. The silver ion is in the middle with the two ammonia molecules joined on at 180°. They are joined using lone pairs on the two nitrogen atoms bonding to empty orbitals on the silver ion - dative covalent bonding again. The bond angles in the other complexes are pretty obvious:
Then read the page about naming complex metal ions. The names look scary, but are actually less complicated than the names of organic compounds. Again, make sure that you understand this page, so that if you come across a name, you aren't frightened by it. The specific complexes mentioned by the syllabus You will meet these again in statement 28.2.7, but I am just bringing them together here for tidiness.
We will look at these in some detail in the next statement. Notice for now how similar they are. The only essential difference is in the number of water molecules which are replaced by ammonia molecules if you use an excess of ammonia. Predicting the formula and charge of a given complex This is for statement 28.2.6(b). Two examples: Example 1 Work out the formula and the charge of a 6-co-ordinated complex between Cr3+ ions and ammonia molecules. Ammonia molecules are monodentate ligands - they only form one co-ordinate bond to the central ion. The complex will have 6 zero-charged ammonia molecules, attached to a 3+ chromium ion. The overall charge will be +3.
Example 2 Work out the formula and the charge of a 6-co-ordinated complex between Fe3+ ions and ethanedioate ions, (C2O4)2-. Ethanedioate ions are bidentate. If the ion is 6-co-ordinated, and the ethanedioate ions each form two bonds to the central ion (they are bidentate), then you only need 3 ethanedioate ions. The total charges will be 3+ for the ion and 6- for the three ethanedioate ion ligands - a net charge of 3-.
© Jim Clark 2020 |