Chemguide: Support for CIE A level Chemistry Learning outcome 1(f) This statement deals with how you work out empirical formulae and molecular formulae from experimental data. It expects you to be able to do it in two ways - from data about the masses or percentages of the various elements combined together, or from data obtained from combustion experiments. You also have to be able to work out a molecular formula from an empirical formula. Before you go on, you should find and read the statement in your copy of the syllabus. Finding empirical formulae from masses or percentages If you have a formula like, say, CH4, you can read this as saying that 1 mole of carbon atoms are combined with 4 moles of hydrogen atoms. In a different example, if you could work out that phosphorus and oxygen atoms combined together in the ratio of 2 moles of phosphorus atoms to 3 moles of oxygen atoms, then you would know that the empirical formula was P2O3. You don't, of course know anything about the molecular formula. All you know is that the ratio is 2:3. The molecular formula could equally well be P4O6 or P6O9 or whatever. You can find mole ratios from data involving either the masses or percentages of the combining atoms. Finding empirical formulae from mass data Suppose you found that 0.46 g of sodium formed 0.78 g of sodium sulfide. That means that 0.46 g of sodium combines with (0.78 - 0.46) g = 0.32 g of sulfur. It is clearest if you set your answer out as a simple table:
That would tell you that the empirical formula was Na2S. Finding empirical formulae from percentage data You might have been given the last example in a different form. You could have been told that the compound contained 59.0% of Na and 41.0% of S by mass. That's not a problem. If you had 100 g of the compound, then the masses of sodium and sulfur would be 59.0 g and 41.0 g respectively. So use those figures in a sum like the last one. Try it, and make sure you get the same answer as before. | ||||||||||||||||
Note: You may find that this time it isn't as easy to spot the ratio. If it isn't immediately obvious, try dividing through by the smallest number. That will almost invariably help. | ||||||||||||||||
Because this topic is covered in my chemistry calculations book (see pages 31 to 33), I can't go any further than this with online help. For reasons that I have explained on another page, all I can do in these cases is to refer you to the book. Finding empirical formulae from combustion data This isn't covered explicitly in my book, and so I can give a complete explanation here. If you burn a compound containing carbon and hydrogen in an excess of air or oxygen, carbon dioxide and water are formed. If you can trap the water and carbon dioxide separately, you can find out what mass of each is formed. From that, you can work out the empirical formula. How you do this varies slightly depending on whether the compound contains anything else as well as the carbon and hydrogen. We'll look at the two cases separately. If the compound only contains carbon and hydrogen A compound which only contains carbon and hydrogen is called a hydrocarbon. Look for this word in the question. You can only use this shorter method if you know that there is nothing else present. Here's an example: When 0.78 g of a hydrocarbon was burned in excess air, 2.64 g of carbon dioxide and 0.54 g of water were formed. Find the empirical formula of the hydrocarbon. The important things to notice is that every mole of CO2 contains 1 mole of carbon atoms. Every mole of H2O contains 2 moles of hydrogen atoms.
It has taken several lines to write this down, but it is a simple calculation. | ||||||||||||||||
Note: If you are writing down a complete calculation rather than filling in answers in a structured exam paper, it is important to include lots of words. Notice how many words there are in the simple calculation above compared with the amount of numbers. You have to include enough words to make it absolutely clear what you are doing | ||||||||||||||||
If the compound contains other things as well as carbon and hydrogen This also applies to cases where you haven't been told that the compound is a hydrocarbon. It might be a hydrocarbon, but you aren't sure. The most likely cases you will come across will probably contain oxygen as well as carbon and hydrogen. In these cases, you have to put in extra steps in order to find out how much oxygen (or whatever) is present. The sequence is:
This all seems a bit long-winded, but it is simple enough if you follow the stages through in an example. The question: 0.23 g of a compound containing carbon, hydrogen and possibly oxygen was burned in an excess of air. 0.44 g of carbon dioxide and 0.27 g of water were formed. Work out the empirical formula of the compound.
Converting empirical formulae into molecular formulae This is really simple! You can do it if you are told either the relative formula mass of the compound or the mass of 1 mole (which is just the relative formula mass expressed in grams). Example 1 Let's follow on with the example above which resulted in an empirical formula of CH. Suppose you knew that the relative formula mass was 78.
Example 2 And let's also follow on with the other example above which resulted in an empirical formula of C2H6O. Suppose you knew that the mass of 1 mole was 46 g.
© Jim Clark 2010 (modified July 2013) |